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lotroduction

» User generated categories (UGCs) express rich semantic relations
implicitly.

> While most methods use pattern matching for English, learning
relations from Chinese UGCs poses challenges due to the flexibile
expressions,

> Our work uses weakly supervised methods to extract relations from
Chinese UGCs based on projection learning and graph mining,
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Initial model training

» Use existing labeled sets and heuristic rules to generate training data
automatically (i.e., is-a and not-is-a relation pairs),

» Train 3 skip-gram model to map each word x; to its embedding x;.

» Train two linear projection madels based an word embeddings. One
for is-a relations. The other for not-is-a relations.

1 A A
JMHBT) =3 3 M*e+B -+ FIMHIE + 218717

X (e)eo~ 5y A
JM~8) = ;:;eo- M7+ 8" — calif + SIIMIE + 283
- where e is a Wikipedia concept and ¢, is the head word of a UGC of
‘entity e in its corresponding Wikipedia page.
> Estimate the prediction score s(e, €) for each unlabeled (e, c) pair.
sle,c) = hnlj(ﬂ!ﬂ“’,n,+, BY —culla— M e+ B~ —c,l12)

2=

FHigh prediction score means there i a large probabilty of is-a relation

o [Dnl + |OF |
collection of head words of

(1410} + 01) 221+ Etesien, sterc)
UGCs.

Mining 1s-a Relations

Score refinement by callective inference

> Re-normalize the prediction score s(e, c) based on the initial
prediction score and global prediction score.
fle,c) = Bs(e,c) + (1 — B)z(h)
where 3 € (0, 1) is the tuning parameter and g(h) is the
4 4 IR X )
narmalized version of 2(h): g(h) = g, TP
» Expand the number of hypernyms by the following heuristic rule:
Finally, we regard c;, as a valid hypernym of e if ¢ is predicted as a
hypernym of e and ¢, is also a Wikipedia concept

Mining Non-taxonomic Relations

Single-pass category pattern mining

» Extract category patterns by replacing entity placeholders with
specific entity names in UGCs. For example, the pattern is "[E}ix%F
% (Winner of [E])" for "B 522 144 (Winner of Turing Avard)"|
The pair (T8 (H9937-2, (67 32)(Tim Berners-Lee, Turing
Award)" can be extracted as a candidate relation instance

» Calculate the pattern support scare supp(p) of pattern p and filter
out low-support patterns by,

supp(p) = | Ryl + In(1 + L)

where Ry, is the collection of extracted pairs for pattern pand L, is
the pattern length.

Graph-based raw relation extractor

® Far each pattern p, construct a graph G where nodes are extracted
candidate relation pairs based on p and weighted edges are the
semantic similarities between the pairs.

» Detect 3 Maximum Edge Weight Clique (MEWC) C* in G and treat
‘pairs in C* as seed relation instances that p may represent. We
propose 3 Monte Carlo based method to extract the MEWC from the
graph approximately. Please refer to the paper for details.

» Extract relation instances for the underline ralstion that P may

present by finding pairs that are similar to the seed relation instances.

Relation mapping

» Map extracted pairs to relation triples by defining the relation
predicates through i) direct verbal mapping, ii) direct non-yerbal
mapping and iii) indirect mapping

Expetiments

Experiments on is-a relation extraction
> Dataset: 1,788 labeled entity-UGC pairs extracted from Chinese
Wikipedia.

» Metrics: Precision, Recall and F-Measure,
» Results: Our approach outperforms all competitive baselines

Method Precision (%) Recall (%) F-Measure (%)
Concat Model W 842 672 =

Sum Model 809" J{ S O 7

Diff Madel 783 = 75
Pizcewise Projection 789 123 aass

Our Method {w/o Exp) 833 B4 887
Our Method 898 B88.3 89.0

Experiments on non-taxonomic relation extraction
> Dataset: All entity-UGC pairs in Chinese Wikipedia
> Metrics: Size (£extractions for a certain relation type), Accuracy and
Coverage (whether the extracted relations are covered by a large
existing Chinese KB).
> Results: Our approach can extract a large amount of novel refations
with high accuracy.
Relation Size Accuracy
5 i {graduated-from) 48,115 98,0
EF(locatedin) 2980972
3B (extabiished-in] 20,154 050
H % (bornin) 11671 983
A (member.of) 8445 %60
%H(npm;g)r 5956 582 i

> Please refer 1o more supplementary experiments in the paper.

Conclusion and Future Woek

> Mmmamwwmmwmmh ‘
Chinese UGCs. nmmmmummuuﬂu
accuracy for the Chinese language
* Future work includes
2 Improving our wark for short teet knowledge extraction:
> Designing a general framawork for croseimpal UGC refation
extracnon,
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Prevgous Work: Error Analysis

= Bentwogll et (2016) and Toral and Sanchez-
Cartagena (2017) both observed:

* NMT transiations have fewer morphological,

lexical and word order errors.

« But marked degradation in longer sentences.

= Sennrich (2016): NMT systems are graded
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original references or corrupted versions
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An Outstanding Academic Contribution
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tabases with Norms for P

guese

. L . L. . Study|Participants War Property Pertuguese Yariant Scale
- Focus of this study: subjective psycholinguistic properties; 2 3780 |concreteness, imageanility, subjective frequency  European 17
depend on the experiences individuals had using the words 4 Ls foh Buopsan |19
! € 4 909 Braslian 17
1. ward imageahility the ease and speed with which a word evokes a mental image: 5 T Euopean LT
2. concreteness the degree to which words refer ta ohjects, people. places. or things that 6] 240 imazaeabillly, comcreleness Europe: 17
can bo exparionced by the senscs; Table 1. Norms for Portuguese on the focused psychalinguistic properties.
3. subjective frequency the estimation of the number of times a word is encountered by

individuals in its written or spoken form:

1. age of acquisition - AoA, is the estimation of the age at which a word was learned Evaluation

Used in various NLP tasks: N .
i - Table 2 presents best results: Skip-Gram and GloVe embeddings
lezical simplification; text simplification at the sentence level; to predict the reading times of th d 300
wi = 300.

- 20x5-fold cross-validation

Cancreteness
Gap and Purpose Regressors (1088

each word in 2 sentence; to create robust text level readability models.

Subjective Fresuency  Imageakility  AoA Merging

(3735) {3735 (2348)
MSE # p [MSE r P MSE ¢ p MSE ¢ p
N ; i : Lesital 124 050 056[0.55 072 073 074 056 059 0.67 073 073
Most of these properties are costly and time-consuming to be S U5 0o noa|nes ave omt oat by
maﬂual\y gathered‘ GloVe 042 080 081|040 0AL 081 043 075 075 063 075 075
. . P . Lexical + Skip-gram 044 082 DE2(U 0T 079 047 ULF7 078 059 077 077
- English language: MRC Psycholinguistic database, with 27 Lexical + GloVe 070 0E0 CO[039 081 081 050 0.9 006 0.540.79 0.79
subjective properties for 150,837 words; Skipgrm - Clove 049 0.85 085141 080 030 042 0.79 0.79 067 0.75 0.7
L. . Lexical | Skip-gram | ClaVe 055 085 024(0.38 082 082 043 070 078 054 078 079
- Portuguese: only datasets of limited size [2, 3, 4, 5]; Table 2. MSE and Pearson and Spearman correlation scores of the regression models.
- Previous approaches to automatically infer the properties: based MmO ASA(ITLT) ol Merg (2358
on a large, scaree lexical resource as WordNet [1]; MSE £ p MEE o op MSE c p
- Lewical 0491 067 066 104 076 075 067 073 072
- We explore here three research questions: Skipgram 130 056 058 136 068 065 081 066 066
L. is it possible to achieve high Pearson and Spearman correlations and low MSE values using Glave 118 062 DAY 083 079 075 063 D75 075
a regressian mathod with only ward embedding ta infor the psycholinguistic praperties? Lesical | Giove 0.80 0.72 0.71 0.79 0.83 0.60 0.54 0.79 0.79
2. which size a psychalinguistic database should have to be used in regression models? Does Iable 3. MSL, Pearsan, and Spearman correlations of the regression models.
marging databascs from differant sourecs yickd battar corrclation and lowar MSE scores?
3. can the inferred values help in creating features that result in more reliable readability Flesch Honeré Concreteress Famiaiey aop D0 | GUining Sublective Pvchalin |y ppyylie
prediction models? Chall | Fax  Frequency  guistins
026 029 0.27 023 028 036 0.37 0.32 045 0.28 | 0.584

[able 4. F1 measure of Psychalinguistic and Classic readability formulas for readability prediction

The Proposed Method: Regression in a Multi-View

L ing A h
SEIIME SRk Conclusions and Future Work

> — A large database of 26,374 BP words annotated with
Linguislics . PR .
S pldge Fograssor 1 psycholinguistic properties: sttp://nile. icnc usp. br/psycholinguistic
X - Alpha scores of 0.921 for imagezbility and 0.820 for concreteness
—> — e { Averega — similar to the values reported in literature;
¢
N . .
Glovio Ficge Regressor 2 ~ With respect to our research questions
1. we have shown we can infer psycholinguistic properties for BP using word embeddings:
& 2 Gur regressors need 3 reasonably large number of training instances (st least. more than
WE:? = two thousand examples). as well as complementary lexieal resources to yvield top
ford2Vac

performance for AoA and subjective frequency;
our results show that. psycholinguistic properties can potentially aid readability prediction

- Future work: extend our extrinsic evaluation to other tasks; use
new modeling techniques for our psycholinguistic features
(besides the average and standard deviation); use a more robust
approach to fusion of regressors, e.g. stacking regression

SipGram  Ridgo Rogressor 3
Figure 1. Pipeline that concatenates all features to train a Multi-View Learning regresser.

10 features grouped in: (i) lexical (1-8); (i) Word2Vec Skip-Gram embeddings
{9); and (iii) GloVe embeddings (10):

Log of Frequency in SUBTLEX-pL-BR; Refer
Log of Contextual diversity [number of subtitles that contain the word) in SUBTLEX-pt-BR;

Log of Frequency in SublMDb PT: subtitles of family, comedy and children movies and series; |

ces

| Gustavo H. Pastzold and Lucia Specia. Inferring psycholinguistic properties of words
Log, of Frequency in the Written Language part of Corpus Brasileiro (1 billien words of Pracedings of NAACL-HLT, pp. 435-440, 2016

Cantemporary BP); Soares AP Costa, AS. J. M. Comesana. M H.M.: The minho ward pool: Norms for

|ng °; peq“e”‘v in the 5”"“5? L‘L”f_“ﬁfgs ”E‘: of Cr"l";,“s ?[?5"5';0' nRE imageability. concreteness, and subjective frequency for 3,800 portuguese words. Behavior
Lag of Frequency in a corpus of 1.4 billion tokens of Mixed Text Genres in BP; Research Methods (2016)

Word Length

FRETS)

=
=

[3] Cameirao, ML Vicente, 5.G. Age-of-acquisition norms for & set of 1,749 Portuguess words

Lexical databases from 6 scheol dictionaries for specific grade-levels; N
Behavior research methods 42(2), 474480 (2010}

Ward's raw cibedding values of Skip-Gram [d — 300, 600 and 1.008):

10, Wiord's rsw embedding values of GloVe (d — 300, 600 and 1,000}, [4] Janczura, G., Castilhe, G., Racha. M., van Erven, T., Huang, T. Normas de concretude para
Embeddings models trained over a corpus of 1.4 billion tokens composed by 9089 palevras da lingus portuguess, Paicolopies Teoria « Pesquis pr, 195-204 (2007)
mixed text genres (http:  fwwwe.nilc, icme.usp.br/embeddings) [8] Marques, LF.. Fonseca, I Morais, S., Pinto, L A. Estimated age of scquisition norms for
834 portuguese nouns and their relation with other psycholinguistic variables. Behavir
Research Methods pp. 439-444 (2007)
[6] Margues, J.F. Normas de imagetica & concreteza para substantivos comuns. Laboratoria de

Psicologia 3, 65-75 (2005)
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| SO O s s CAT expresncn direced Ly the ILI reguistory region ACE-2004 ACE-2005 |
[ £ P N F‘ w/s
Reaopui spaslnamchatrefermenﬂﬁes SR P R=5A
7 mentions of an entity. ‘ S LCRF (single) 662 &7.7 S54 621 485 547 | w02
' or ons or by 3 moltimer of the NE-AT-binding site was lower. LCRF (mulkiple) | 609 551 616665 553 6041194
Lu & Roch (2015) | 725 557 63.0|663 S7.3 615|475
Why overlapping mentions? Thas werk (staTe) | 712 S0 64.0 | 676 534 62.7| 505
This werk (EDGE) | 727 580 64.5(691 S3.1 63.1/2s51s

Overlapping mentions (generalization of

L : GENIA P R R | wis
entities) are frequently ignored, yet they are LCRF (sngle) 771 613 &85 | @16 |
quite useful for downstream tasks such as: LCRF (muitiple) 758 651 7061758 |
® Relation extraction using mention separators s Ren (s | 763 &7 109 sis
® Event extraction ( | Thawon (sTaTe) | 740 677 707 1108
. Comferenu fesoluﬁon Thiz work {ence) iS4 668 TOB | 3892
® Question answering the [ human [ TCF-1 |, protein |,
Lin mention hypergraph
Words (o N1 8 - | - L d k o o
Do they occur often enough to matter? (BILOV) ot v ® Both use edges N (e TCRG s
Yes! They occur often both in standard news ] ® But ours do not have Q’:‘g ? O"\
texts (ACE) and biomedical texts (GENIA). Gaps X the [ human =[ TCF-1 J- protein spurious structures v 2 9
The statistics in ACE (GENIA In brackets): \., "‘"s mo%  ssue present in
® 37.5% (21.6%) sentences contain overlap hypergra
ph o Un | hmen { TORL | el
® 42.6% (18.3%) mentions overlap with others Attempt 1 Al!empt 2 See =

<y o o Ve

. Use Unear CRF Statebased (s!ow.) Use multigraph - Edge-based (betterl) o, shres mede

; « e - TORL b protetn o
o‘l’qadmmsepamgly . hﬂ- : et : S
quhm\duple 2

OUummn(F&M ‘09)
® Use mention

structure (Lu and Roth “15)
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. L . L. . Study|Participants War Property Pertuguese Yariant Scale
- Focus of this study: subjective psycholinguistic properties; 2 3780 |concreteness, imageanility, subjective frequency  European 17
depend on the experiences individuals had using the words 4 Ls foh Buopsan |19
! € 4 909 Braslian 17
1. ward imageahility the ease and speed with which a word evokes a mental image: 5 T Euopean LT
2. concreteness the degree to which words refer ta ohjects, people. places. or things that 6] 240 imazaeabillly, comcreleness Europe: 17
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Lo WOrd imageabpniity ine €ase ana speed with whnich a word evokes a mental image,

2. concreteness the degree to which words refer to objects, people, places, or things that
can be experienced by the senses;

subjective frequency the estimation of the number of times a word is encountered by
individuals in its written or spoken form;

4. age of acquisition - AoA is the estimation of the age at which a word was learned.

- Used in various NLP tasks:

w

lexical simplification; text simplification at the sentence level; to predict the reading times of

each word in a sentence; to create robust text level readability models.

Gap and Purpose

Most of these properties are costly and time-consuming to be
manually gathered;

English language: MRC Psycholinguistic database, with 27

subjective properties for 150,837 words;

Portuguese: only datasets of limited size [2, 3, 4, 5];

Previous approaches to automatically infer the properties: based

on a large, scarce lexical resource as WordNet [1];

- We explore here three research questions:

1. is it possible to achieve high Pearson and Spearman correlations and low MSE values using
a regression method with only word embedding to infer the psycholinguistic properties?

2. which size a psycholinguistic database should have to be used in regression models? Does
merging databases from different sources yield better correlation and lower MSE scores?

3. can the inferred values help in creating features that result in more reliable readability
prediction models?

The Proposed Method: Regression in a Multi-View
Learning Approach

Linguistics
Ridge Regressor 1

(5) 110 834 AocA European 1-7
(6] 103 249 imageability, concreteness European 1-7
Table 1. Norms for Portuguese on the focused psycholinguistic properties.

Evaluation

- Table 2 presents best results: Skip-Gram and GloVe embeddings
with d = 300.

- 20x5-fold cross-validation

Concreteness  Subjective Frequency Imageability =~ AoA Merging

Regressors (4088) (3735) (3735) (2368)
MSE r p MSE r p MSE r p MSE r p
Lexical 124 054 056 055 0.72 0.73 0.74 058 059 0.67 0.73 0.73
Skip-gram 0.52 0.84 0.84 058 0.70 071 0.46 0.77 0.77 0.81 0.66 0.66
GloVe 0.62 0.80 0.81 0.40 081 081 0.49 0.75 0.75 0.63 0.75 0.75

064 082 082 044 0.79 0.79
Lexical + GloVe 0.70 0.80 0.80 0.39 0.81 0.81
Skip-gram + GloVe 0.490.850.85 0.41 080 080 0.420.790.79 0.62 0.75 0.75
Lexical + Skip-gram + GloVe 0.55 0.85 0.84 0.380.82 0.82 043 0.79 0.78 0.54 0.79 0.79
Table 2. MSE and Pearson and Spearman correlation scores of the regression models.

Lexical + Skip-gram 0.47 0.77 0.78 0.59 0.77 0.77

0.50 0.75 0.76 0.54 0.79 0.79

T AoA (765) AoA (1717) AoA Merge (2368)
MSE r p MSE r p MSE r p

Lexical 091 067 0.66 1.04 0.76 0.75 067 0.73 0.72
Skip-gram 130 0.56 0.58 1.36 0.68 0.65 0.81 0.66 0.66
GloVe 1.18 0.62 0.63 0.93 0.79 0.75 0.63 0.75 0.75

Lexical + GloVe 0.80 0.72 0.71 0.79 0.83 0.80 0.54 0.79 0.79
Table 3. MSE, Pearson, and Spearman correlations of the regression models.

Flesch Honoré Concreteness Familiarity AcA Dale- | Gunning | Subjective Psyghol:m MATTR Brunét
Chall Fox  Frequency guistics
026 029 0.27 023 025 0.36 0.37 0.32 0.45 048 0.54

Table 4. F1-measure of Psycholinguistic and Classic readability formulas for readability prediction.

Conclusions and Future Work

- A large database of 26,874 BP words annotated with
pS)lChO“ﬂgUiStiC properties: http://nilc.icmc.usp.br/psycholinguistic
- Alpha scores of 0.921 for imageability and 0.820 for concreteness
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Regressors (4088) (3735) (3735) (2368)
MSE r p MSE r p MSE r p MSE r p
Lexical 124 054 056 055 0.72 0.73 0.74 058 059 0.67 0.73 0.73
Skip-gram 0.52 0.84 0.84 058 0.70 071 0.46 0.77 0.77 0.81 0.66 0.66
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0.64 082 0.82 044 0.79 0.79
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Leg . 0.79
ITabIe 2. MSE and Pearson and Spearman correlation scores of the regression modelzl

Lexical + Skip-gram 0.47 0.77 0.78 0.59 0.77 0.77

T AoA (765) AoA (1717) AoA Merge (2368)
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Table 3. MSE, Pearson, and Spearman correlations of the regression models.

Flesch Honoré Concreteness Familiarity AcA Dale- | Gunning | Subjective Psyghol:m MATTR Brunét
Chall Fox  Frequency guistics
026 029 0.27 023 025 0.36 0.37 0.32 0.45 048 0.54

Table 4. F1-measure of Psycholinguistic and Classic readability formulas for readability prediction.

Conclusions and Future Work

- A large database of 26,874 BP words annotated with
pS)lChO“ﬂgUiStiC properties: http://nilc.icmc.usp.br/psycholinguistic
- Alpha scores of 0.921 for imageability and 0.820 for concreteness
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2. concreteness the degree to which words refer to objects, people, places, or things that
can be experienced by the senses;

subjective frequency the estimation of the number of times a word is encountered by
individuals in its written or spoken form;

4. age of acquisition - AoA is the estimation of the age at which a word was learned.

- Used in various NLP tasks:
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lexical simplification; text simplification at the sentence level; to predict the reading times of

each word in a sentence; to create robust text level readability models.

Gap and Purpose

Most of these properties are costly and time-consuming to be
manually gathered;

English language: MRC Psycholinguistic database, with 27
subjective properties for 150,837 words;

Portuguese: only datasets of limited size [2, 3, 4, 5];

Previous approaches to automatically infer the properties: based
on a large, scarce lexical resource as WordNet [1];
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Figure 1. Pipeline that concatenates all features to train a Multi-View Learning regressor.

Features for Regressors

10 features grouped in: (i) lexical (1-8); (ii) Word2Vec Skip-Gram embeddings
(9); and (iii) GloVe embeddings (10):

Log of Frequency in SUBTLEX-pt-BR;

Log of Contextual diversity (number of subtitles that contain the word) in SUBTLEX-pt-BR;
Log of Frequency in SubIMDb-PT: subtitles of family, comedy and children movies and series;
Log of Frequency in the Written Language part of Corpus Brasileiro (1 billion words of
Contemporary BP);

5. Log of Frequency in the Spoken Language part of Corpus Brasileiro;

6. Log of Frequency in a corpus of 1.4 billion tokens of Mixed Text Genres in BP;

7. Word Length;

8. Lexical databases from 6 school dictionaries for specific grade-levels;

9. Word's raw embedding values of Skip-Gram (d = 300, 600 and 1,000);

10. Word's raw embedding values of GloVe (d = 300, 600 and 1,000).

Embeddings models trained over a corpus of 1.4 billion tokens composed by
mixed text genres (http://www.nilc.icmc.usp.br/embeddings)
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Conclusions and Future Work

- A large database of 26,874 BP words annotated with
psycholinguistic properties: http://nilc.icmc.usp.br/psycholinguistic

~ Alpha scores of 0.921 for imageability and 0.820 for concreteness
— similar to the values reported in literature;

- With respect to our research questions:

1. we have shown we can infer psycholinguistic properties for BP using word embeddings;

2. our regressors need a reasonably large number of training instances (at least, more than
two thousand examples), as well as complementary lexical resources to yield top
performance for AoA and subjective frequency;

3. our results show that psycholinguistic properties can potentially aid readability prediction.

- Future work: extend our extrinsic evaluation to other tasks; use
new modeling techniques for our psycholinguistic features
(besides the average and standard deviation); use a more robust
approach to fusion of regressors, e.g. stacking regression.
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Psicologia 3, 65-75 (2005)
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Introduction

- Focus of this study: subjective psycholinguistic properties;
depend on the experiences individuals had using the words:

word imageability the ease and speed with which a word evokes a mental image;
concreteness the degree to which words refer to objects, people, places, or things that
erienced by the senses

3. subjective frequency the estimation of the number of times a word is encountered by

Gap and Purpose

Most of these properties are costly and time-consuming to be
manually gathered;

- English language: MRC Psycholinguistic database, with 27
subjective properties for 150,837 words;

- Portuguese: only datasets of limited size [2, 3, 4, 5];

- Previous approaches to automatically infer the properties: based
on a large, scarce lexical resource as WordNet [1];

- We explore here three research questions:

is it possible to achieve high Pearson and Spearman correlations and low MSE values using

a regression method with only word embedding to infer the psycholinguistic properties?

which size a psycholinguistic database should have to be used in regression models? Does

merging databases from different sources yield better correlation and lower MSE scares?

3. can the inferred values help in creating features that result in more reliable readability
prediction madels?

The Proposed Method: Regression in a Mu

Linguistics

Word2Vec
SkipGram

Features for Regressors

10 features grouped in: (i) lexical (1-8); (ii) Word2Vec Skip-Gram embeddings
(9); and (iii) GloVe embeddings (10)

Log of Frequency in SUBTLEX-pt-BR;

Log of Cantextua! diversity (number of subtitles that contain the word) in SUBTLEX-pt-BR;
Log of Frequency in SubIMDb-PT: subtitles of family, comedy and children movies and series:

Log of Frequency in the Written Language part of Corpus Brasileira (1 billion words of
Contemporary BP)

2

Log of Frequency in the Spoken Language part of Corpus Brasileiro;

Log of Frequency in a corpus of 1.4 billion tokens of Mixed Text Genres in BP:
Word Length;

Lexical databases from 6 school dictionaries for specific grade-levels;
Word's raw embedding values of Skip-Gram (d = 300, 600 and 1,000)
10. Word's raw embedding values of GloVe (d = 300, 600 and 1,000)
Embeddings models trained over a corpus of 1.4 billion tokens composed by
mixed text genres (http:/ /www.nilc.icmc.usp.br /embeddings)

Ridge Regressor 1

Ridge Regressor 2

An Outstanding Academic Contribution

John Doe, Jane Doe and Josh Doe
The Generic University
Typical street, The square, 7998
J7KES3, City, Country

Adaptation of Databases with Norms for Portuguese

Study Participants Wrds Property Portuguese Variant Scale
(2] 2387 3789 concreteness, imageabilty. subjective frequency  European 17
[3] e85 1748 Aok European 19
[ 719 909 concreteness Braziliar 17
(5] 110 834 Aok European 17
(5] 103 240 imagealilty, concreteness European 17

Table 1. Norms for Portuguese on the focused psycholinguistic properties

Evaluation

- Table 2 presents best results: Skip-Gram and GloVe embeddings
with d = 300

- 20x5-fold cross-validation

Concretenass  Subjective Frequency Imageability  Aoh Merging
Regressors (a088) (3735) (3735) (2368)
MSE r  p MSE MSE ¢ p MSE r g
Lexical 124 054 0.56 055 0.72 074 058 059 067 0.73 0.73
Skip-gram 052 0.64 0.84 058 0.70 046 0.77 0.77 0EL 0.66 0.656
GloVe 062 0.80 0.81 0.40 081 049 075 0.75 063 0.75 0.75
Lexical + Skip-gram 064 062 0.82 D44 047 0.77 0.78 05
Lexical + GloVe 0.70 0.80 0.80 0.39 0.81 0.50 0.75 0.76 0.54 0.79 0.79
Skip-gram + GloVe 0.490.850.85 041 080 0. 0.420.790.79 062 0.7°
Lexical + Skip-gram + GloVe 055 085 0.64 0.38 0.82 0.82 043 079 078 054

Table 2. MSE and Pearson and Spearman correlation scores of the regression models
- ng Si l Psychalin-
Dale- Gunning Subjective Poycholin- oo
Chall  Fox  Frequency  guistics
026 029 027 023 025 03 03 0 045 048
Table 4. F1-measure of Psycholinguistic and Classic reada

Flesch Honoré Concreteness Fa

liarity AcA

0.54
formulas for readability pred

n

Average

Ridge Regressor 3
Figure 1. Pipeline that concatenates all features to train a Multi-View Learning regressor.

Conclusions and Future Work

- A large database of 26,874 BP words annotated with
psycholinguistic properties: /p

~ Alpha scores of 0.921 for imageability and 0.820 for concreteness
— similar to the values reported in literature;

//nile.ieme.usp

iolinguistic

— With respect to our research questions:
we have shown we can infer psycholinguistic properties for BP using word embeddings;
our regressors need a reasonably large number of traini

instances (at least, mare than
two thousand examples), as well as complementary lexical resources to yield top
performance for AoA and subjective frequency:

. our results show that psycholinguistic properties can potentially aid readability prediction.

- Future work: extend our extrinsic evaluation to other tasks: use

new modeling techniques for our psycholinguistic features
(besides the average and standard deviation); use a more robust
approach to fusion of regressors, e.g. stacking regression.
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An Outstanding Academic Contribution

John Doe, Jane Doe and Josh Doe
The Generic University
Typical street, The square, 7998

J7KE3, City, Country

of

tabases with Norms for P

guese

. L . L. . Study|Participants War Property Pertuguese Yariant Scale
- Focus of this study: subjective psycholinguistic properties; 2 3780 |concreteness, imageanility, subjective frequency  European 17
depend on the experiences individuals had using the words 4 Ls foh Buopsan |19
! € 4 909 Braslian 17
1. ward imageahility the ease and speed with which a word evokes a mental image: 5 T Euopean LT
2. concreteness the degree to which words refer ta ohjects, people. places. or things that 6] 240 imazaeabillly, comcreleness Europe: 17
can bo exparionced by the senscs; Table 1. Norms for Portuguese on the focused psychalinguistic properties.
3. subjective frequency the estimation of the number of times a word is encountered by

individuals in its written or spoken form:

1. age of acquisition - AoA, is the estimation of the age at which a word was learned Evaluation

Used in various NLP tasks: N .
i - Table 2 presents best results: Skip-Gram and GloVe embeddings
lezical simplification; text simplification at the sentence level; to predict the reading times of th d 300
wi = 300.

- 20x5-fold cross-validation

Cancreteness
Gap and Purpose Regressors (1088

each word in 2 sentence; to create robust text level readability models.

Subjective Fresuency  Imageakility  AoA Merging

(3735) {3735 (2348)
MSE # p [MSE r P MSE ¢ p MSE ¢ p
N ; i : Lesital 124 050 056[0.55 072 073 074 056 059 0.67 073 073
Most of these properties are costly and time-consuming to be S U5 0o noa|nes ave omt oat by
maﬂual\y gathered‘ GloVe 042 080 081|040 0AL 081 043 075 075 063 075 075
. . P . Lexical + Skip-gram 044 082 DE2(U 0T 079 047 ULF7 078 059 077 077
- English language: MRC Psycholinguistic database, with 27 Lexical + GloVe 070 0E0 CO[039 081 081 050 0.9 006 0.540.79 0.79
subjective properties for 150,837 words; Skipgrm - Clove 049 0.85 085141 080 030 042 0.79 0.79 067 0.75 0.7
L. . Lexical | Skip-gram | ClaVe 055 085 024(0.38 082 082 043 070 078 054 078 079
- Portuguese: only datasets of limited size [2, 3, 4, 5]; Table 2. MSE and Pearson and Spearman correlation scores of the regression models.
- Previous approaches to automatically infer the properties: based MmO ASA(ITLT) ol Merg (2358
on a large, scaree lexical resource as WordNet [1]; MSE £ p MEE o op MSE c p
- Lewical 0491 067 066 104 076 075 067 073 072
- We explore here three research questions: Skipgram 130 056 058 136 068 065 081 066 066
L. is it possible to achieve high Pearson and Spearman correlations and low MSE values using Glave 118 062 DAY 083 079 075 063 D75 075
a regressian mathod with only ward embedding ta infor the psycholinguistic praperties? Lesical | Giove 0.80 0.72 0.71 0.79 0.83 0.60 0.54 0.79 0.79
2. which size a psychalinguistic database should have to be used in regression models? Does Iable 3. MSL, Pearsan, and Spearman correlations of the regression models.
marging databascs from differant sourecs yickd battar corrclation and lowar MSE scores?
3. can the inferred values help in creating features that result in more reliable readability Flesch Honeré Concreteress Famiaiey aop D0 | GUining Sublective Pvchalin |y ppyylie
prediction models? Chall | Fax  Frequency  guistins
026 029 0.27 023 028 036 0.37 0.32 045 0.28 | 0.584

[able 4. F1 measure of Psychalinguistic and Classic readability formulas for readability prediction

The Proposed Method: Regression in a Multi-View

L ing A h
SEIIME SRk Conclusions and Future Work

> — A large database of 26,374 BP words annotated with
Linguislics . PR .
S pldge Fograssor 1 psycholinguistic properties: sttp://nile. icnc usp. br/psycholinguistic
X - Alpha scores of 0.921 for imagezbility and 0.820 for concreteness
—> — e { Averega — similar to the values reported in literature;
¢
N . .
Glovio Ficge Regressor 2 ~ With respect to our research questions
1. we have shown we can infer psycholinguistic properties for BP using word embeddings:
& 2 Gur regressors need 3 reasonably large number of training instances (st least. more than
WE:? = two thousand examples). as well as complementary lexieal resources to yvield top
ford2Vac

performance for AoA and subjective frequency;
our results show that. psycholinguistic properties can potentially aid readability prediction

- Future work: extend our extrinsic evaluation to other tasks; use
new modeling techniques for our psycholinguistic features
(besides the average and standard deviation); use a more robust
approach to fusion of regressors, e.g. stacking regression

SipGram  Ridgo Rogressor 3
Figure 1. Pipeline that concatenates all features to train a Multi-View Learning regresser.

10 features grouped in: (i) lexical (1-8); (i) Word2Vec Skip-Gram embeddings
{9); and (iii) GloVe embeddings (10):

Log of Frequency in SUBTLEX-pL-BR; Refer
Log of Contextual diversity [number of subtitles that contain the word) in SUBTLEX-pt-BR;

Log of Frequency in SublMDb PT: subtitles of family, comedy and children movies and series; |

ces

| Gustavo H. Pastzold and Lucia Specia. Inferring psycholinguistic properties of words
Log, of Frequency in the Written Language part of Corpus Brasileiro (1 billien words of Pracedings of NAACL-HLT, pp. 435-440, 2016

Cantemporary BP); Soares AP Costa, AS. J. M. Comesana. M H.M.: The minho ward pool: Norms for

|ng °; peq“e”‘v in the 5”"“5? L‘L”f_“ﬁfgs ”E‘: of Cr"l";,“s ?[?5"5';0' nRE imageability. concreteness, and subjective frequency for 3,800 portuguese words. Behavior
Lag of Frequency in a corpus of 1.4 billion tokens of Mixed Text Genres in BP; Research Methods (2016)

Word Length

FRETS)

=
=

[3] Cameirao, ML Vicente, 5.G. Age-of-acquisition norms for & set of 1,749 Portuguess words

Lexical databases from 6 scheol dictionaries for specific grade-levels; N
Behavior research methods 42(2), 474480 (2010}

Ward's raw cibedding values of Skip-Gram [d — 300, 600 and 1.008):

10, Wiord's rsw embedding values of GloVe (d — 300, 600 and 1,000}, [4] Janczura, G., Castilhe, G., Racha. M., van Erven, T., Huang, T. Normas de concretude para
Embeddings models trained over a corpus of 1.4 billion tokens composed by 9089 palevras da lingus portuguess, Paicolopies Teoria « Pesquis pr, 195-204 (2007)
mixed text genres (http:  fwwwe.nilc, icme.usp.br/embeddings) [8] Marques, LF.. Fonseca, I Morais, S., Pinto, L A. Estimated age of scquisition norms for
834 portuguese nouns and their relation with other psycholinguistic variables. Behavir
Research Methods pp. 439-444 (2007)
[6] Margues, J.F. Normas de imagetica & concreteza para substantivos comuns. Laboratoria de

Psicologia 3, 65-75 (2005)




Posters: The Solutions

With respect to our research questions:
1. we have shown we can infer psycholinguistic properties for BP using word embeddings;

2. ourregressors need areasonably large number of tfraining instances (at least, more than
two thousand examples), as well as complementary lexical resources to yield top
performance for AOA and subjective frequency;

3. ourresults show that psycholinguistic properties can potentially aid readability prediction.
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With respect to our research questions:

1.
2,

we have shown we can infer psycholinguistic properties for BP using word embeddings;

our regressors need a reasonably large number of training instances (at least, more than
two thousand examples), as well as complementary lexical resources to yield top
performance for AoA and subjective frequency;

our results show that psycholinguistic properties can potentially aid readability prediction.
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Regressors need a substantial amount of training data

Age of acquisition and familiarity models require exira resources
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Findings:

1. Possible to infer psycholinguistic properties for BP with only embeddings
Regressors need a substantial amount of training data

Age of acquisition and familiarity models require exira resources

Our psycholinguistic properties can improve readability prediction
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psycholinguistic properties: http://nilc.icmc.usp.br/psycholinguistic
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Psycholinguistic features for 26,874 BP words:

hitp://nilc.icmc.usp.br/psycholinguistic
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—

. Word Length;

Log of Frequency in SUBTLEX-pt-BR;

Log of Frequency in SubIMDb-PT: subtitles of family, comedy and children movies and series;

Log of Contextual diversity (number of subtitles that contain the word) in SUBTLEX-p1-BR;

Log of Frequency in the Spoken Language part of Corpus Brasileiro;

Log of Frequency in the Written Language part of Corpus Brasileiro (1 billion words of Contemporary BP);
Log of Frequency in a corpus of 1.4 billion tokens of Mixed Text Genres in BP;

Lexical databases from 6 school dictionaries for specic grade-levels;

Word's raw embedding values of Skip-Gram (d = 300, 600 and 1,000);

10. Word's raw embedding values of GloVe (d = 300, 600 and 1,000).

e NP>PAMEPPN
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—

. Word Length

Log of Frequency in SUBTLEX-PT

Log of Frequency in SubIMDb-PT

Log of number of subtitles that contain the word in SUBTLEX-PT

Log of Frequency in the Spoken Language part of Corpus Brasileiro
Log of Frequency in the Written Language part of Corpus Brasileiro
Log of Frequency in a corpus of Mixed Text Genres

Lexical databases from 6 school dictionaries

e NP>PAMEPPN

Word's raw embedding values of Skip-Gram

10. Word's raw embedding values of GloVe



Posters: The Solutions

Focus of this study: subjective psycholinguistic properties; depend on the experiences
individuals had using the words:

O 1. word imageability the ease and speed with which a word evokes a mental image;

O 2. concreteness the degree to which words refer to objects, people, places, or things that
can be experienced by the senses;

O 3. subjective frequency the estimation of the number of times a word is encountered by
individuals in its written or spoken form;

O 4. age of acquisition - AoA is the estimation of the age at which a word was learned.
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Focus of this study: subjective psycholinguistic properties; depend on the experiences
individuals had using the words:

O 1. word imageability the ease and speed with which a word evokes a mental image;

O 2. concreteness the degree to which words refer to objects, people, places, or things that
can be experienced by the senses;

O 3. subjective frequency the estimation of the number of times a word is encountered by
individuals in its written or spoken form;

O 4. age of acquisition - AoA is the estimation of the age at which a word was learned.
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We predict 4 psycholinguistic properties for Porfuguese:

O Imageability: Ease with which a word evokes a mental image.
O Concreteness: Degree to which words refer to things that can be experienced by the senses.
O Familiarity: The number of fimes a word is found by individuals in its written or spoken form.

O Age of Acquisition: The estimate of the age at which a word was learned.
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Challenges:

O Most of these properties are costly and time-consuming to be manually
gathered;

O English language: MRC Psycholinguistic database, with 27 subjective
properties for 150,837 words;

O Portuguese: only datasets of limited size [2, 3, 4, 5];

O Previous approaches to automatically infer the properties: based on a large,
scarce lexical resource as WordNet [1];
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properties for 150,837 words;

O Portuguese: only datasets of limited size [2, 3, 4, 5];

O Previous approaches to automatically infer the properties: based on a large,
scarce lexical resource as WordNet [1];
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Challenges:

1. Manually produced properties for Porfuguese are very scarce
2. Previous approaches use expensive, unavailable resources
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Challenges:

1. Manually produced properties for Portluguese are very scarce
2. Previous approaches use expensive, unavailable resources
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Used in various NLP tasks:

Olexical simplification; text simplification at the sentence level; to
predict the reading times of each word in a sentence; to create
robust text level readability models.
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Used in various NLP tasks:

Olexical simplification; text simplification at the sentence level; to
predict the reading times of each word in a sentence; to create
robust text level readability models.
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Various applications:

« Lexical simplification « Reading time prediction
» Sentence simplification « Readability models
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What can | make visual?

(and how do | do 1t¢)
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Alpha scores of 0.921 for imageability and 0.820 for concreteness
- similar to the values reported in literature;
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Alpha inter-annotator agreement scores:

Imageabillity | Concreteness
0.921 0.820
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10 features grouped in: (i) lexical (1-8); (i) Word2Vec Skip-Gram
embeddings (?); and (iii) GloVe embeddings (10)
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Feature groups:

Lexical

Skip-Gram

GloVe

1-8

7

10
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Flesch|Honoré|Concreteness |Familiarity|AocA Dale- | Gunning | Subjective Psy:.:hc.}lln— MATTR|Brunét
Chall Fox | Frequency| guistics
0.26 | 0.29 0.27 0.23 |0.25| 0.36 0.37 0.32 0.45 0.48 | 0.54

Table 4. F1-measure of Psycholinguistic and Classic readability formulas for readability prediction.
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Brunet

MATTR
Psycholinguistics
Subjective Frequency
Gunning Fox
Dale-Chall

AoOA

Familiarity
Concreteness
Honore

Flesch

Readability Scores

0.54 |

0.48 |

0.45 |

0.32 |

0.37 |

0.36 |

0.25 |

0.23 |

0.27 |

0.29 |

0.26 |

0.1 0.2 0.3

0.4

0.5

0.6
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Native Languages:

Portuguese Chinese Spanish Others
15.2% 13.1% 11.1% 60.6%




Posters: The Solutions

Native Languages

15%

<

0
61% 11%

o Portuguese o Chinese i Spanish 1 Others




Posters: The Solutions

AoA (765) AoA (1717)  AoA Merge (2368)

R
e MSE r p MSE r p MSE r P

Lexical 091 0.67 0.66 1.04 0.76 0.75 0.67 0.73 0.72
Skip-gram  1.30 0.56 0.58 1.36 0.68 0.65 0.81 0.66 0.66
GloVe 1.18 0.62 0.63 0.93 0.79 0.75 0.63 0.75 0.75
Lexical + GloVe 0.80 0.72 0.71 0.79 0.83 0.80 0.54 0.79 0.79
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AoA (765) AoA (1717)  AoA Merge (2368)
MSE r p MSE r p MSE r p

Regressors

Lexical 091 0.67 0.66 1.04 0.76 0.75 0.67 0.73 0.72
Skip-gram | 1.30 0.56 0.58 1.36 0.68 0.65 0.81 0.66 0.66
GloVe 1.18 0.62 0.63 0.93 0.79 0.75 0.63 0.75 0.75
Lexical + GloVe]0.80 0.72 0.71 0.79 0.83 0.80 0.54 0.79 0.79
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AoA (765)
MSE r p

Lexical 0.91 0.67 0.66
Skip-gram  1.30 0.56 0.58
GloVe 1.18 0.62 0.63
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Regressors AoA (765) AoA (1717)  AoA Merge (2368)
p p p
Lexical 0.66 0.75 0.72
Skip-gram 0.58 0.65 0.66
GloVe 0.63 0.75 0.75
Lexical + GloVe 0.71 0.80 0.79
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Pearson Correlation Scores
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
AcA(1717) Merge(2368)
= Lexical Skip-gram =GloVe =LexXical+GloVe
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C 1t | @ hitpsy//plotlyblog.tumblr.com/post/118355223592 /how-to-analyze-data-eight-useful-ways-you-can

How To Analyze Data: Eight
Useful Ways You Can Make
Graphs

Visualizing data makes it easier to understand, analyze, and communicate. How can you decide
which of the many available chart types is best suited for your data? Use this guide to get familiar
with some common graph types and how they are used. We made these graphs with our free
online tool; contact us to use Plotly Enterprise on-premise.
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Zt — 0 (Wz ' :ht—la$t:)
Tt = J(Wr ' :ht—lnxt:)
E,t — tanh (W y [Tt % ht—la $t])

ht:(l—zt)*ht_l—l—zt*ﬁt
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Zt = 0 (Wz ' :ht—la:}jt:)
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Zt = 0 (Wz ' :ht—la:}jt:)
Tt = U(Wr ' :ht—lnxt:)
7?,3 — tanh (W y [Tt X ht—la mt])

ht:(l—zt)*ht_]_—l—zt*ﬁt
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Update gate
Reset gate

7?,3 — tanh (W ‘ [Tt X ht—la mt])
ht — (1—Zt)*ht_]_—|—zt*ﬁt
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7?,3 — tanh (W ‘ [‘T‘t X ht—la mt]

ht:(l—zt)*ht_]_—l—zt*ﬁt
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Reset gate:
(W, - [h,t_lj .”L't]
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What else can be made visual?
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Neural architectures:

2t = 0 (Wz ‘ :ht—ljxt:)
re =0 (W’r ' :ht—laxti)
h, = tanh (W - [re x hy_1,24])

ht:(l—zt)*ht_l—l—zt*?lt
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Neural architectures:

|
Q
=

:ht—lj ﬂf»’t)

[
Q
=

:ht—la xt)

tanh (W - [ry * he_1, 2¢])

(1 —Zt) *ht—l + 24 *??/t

Embedding layers:

Bi-directional
RNN layers:

Source context vector: | Cj

Machine translation
Original sentence: ~ Segment preceding y;:

| Xq, X, Xn \ NY2 o | \ Vit Y2 I |
Ey1, By2, - By —HEVJ+1| EYj+2, - EYm ‘
M :

IR e S 5y | o o

Machine translation
segment suceeding y;:

Exq Exp, .., Exp

Eilec

EilEd

Intermediate context representation:
Maxout layer

Final context representation:
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Neural architectures:

2t = 0 (Wz ‘ :ht—ljxt:)
re =0 (W’r ' :ht—laxti)

?Zt — tanh (W ‘ [Tt * hy_1, th])

ht:(l—zt)*ht_l—l—zt*?lt
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Languages/Countries:

« German-Slovenian
» Spanish-Russian
* French-English
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Languages/Countries:

« German-Slovenian
» Spanish-Russian

* French-English
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Task definitions:

Named-entity recognition (NER)

(also known as entity identification,
entity chunking and entfity extraction)

is a subtask of information extraction

that seeks to locate and classify

named entities in text into pre-defined
categories such as the names of persons,
organizations, locations, expressions of
times, quantities, monetary values,
percentages, etc.
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Task definitions:

Named-entity recognition (NER)

(also known as entity identification,
entity chunking and entfity extraction)

is a subtask of information extraction

that seeks to locate and classify

named entities in text into pre-defined
categories such as the names of persons,
organizations, locations, expressions of
times, quantities, monetary values,
percentages, etc.

FDA

Obama|addressed the[FDA|questions
in the city of|Denver - CA [ast week.
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Task definitions:

In natural language processing, word
sense disambiguation (WSD) is the
problem of determining which "sense"
(meaning) of a word is activated by the
use of the word in a particular context, a
process which appears to be largely
unconscious in people. WSD is a natural
classification problem: Given a word
and its possible senses, as defined by a
dictionary, classify an occurrence of the
word in context info one or more of its
sense classes.
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Task definitions:

In natural language processing, word
sense disambiguation (WSD) is the
problem of determining which "sense"
(meaning) of a word is activated by the
use of the word in a particular context, a
process which appears to be largely
unconscious in people. WSD is a natural
classification problem: Given a word
and its possible senses, as defined by a
dictionary, classify an occurrence of the
word in context info one or more of its
sense classes.

yesterday.
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Input/Output examples:

Input: Translation
Output: Quality labels
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Input/Output examples:

Original Sentence: | De sus cinco hijos, el mayor, de 30 afios, también trabaja cargando azufre.

Machine translation: | Of its five children , the biggest , of 30 years , also works loading sulfur .

U R C*('__'HOJ;( v v

Input: Translation

Multi-class labels: | ok § oK 0K OKoK § v OKOK v OK OK
O 1. 1.. |°_|_ | b | Function words Mistranslation Style/register Mistranslation
utput: Quality labels 1 — 1
v v v v
Level 1 labels: Fluency Accuracy Fluency Accuracy

Binary labels: BAD BAD BAD BAD
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Tool/resource names:

ANIto
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Tool/resource names:

Anita = ﬁni@ta
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Institutions:

University of Sheffield
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Institutions:

University of Shetfield -
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People:

Gustavo H. Paetzold
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People:

Gustavo H. Paetzold »
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5. Bland styling
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[ Free Research Poster PowerPoint Templates

. Change colors with one click.

USA sizes International

- Most standard US and international poster sizes.
. Support for all PowerPoint versions. e 48x48 91x122 AD
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C (0 @ www.brian-amberg.de

LaTeX Poster Template

Introduction

A LaTeX template to efficently design pretty posters for scientific conferences. Posters are composited of blocks with
headings, which can be positioned easily on the page, using absolute or relative positioning. A number of predefined
styles can be composed to generate new color schemes and ornaments.

29. September 2011:

o Finally fixed confusion with paper size handling and landscape. This required seperate handling of papersizes
known to the geometry package and other packages.
26. September 2011:
o Reverted drawing of faded borders to manual method, as the current result does not work with evince, and
produced spurious colored boxes with okular and acroread.

““I'was in the usual horrible
facing the most important
conference in my life with
days to go, but your tempi
allowed me to come up wi
(rather nice) poster I encl
day -- from googling to th
-- even leaving some time,
packing my bags ).

““baposter [...] makes beauti
posters, much better and |
easily than what you cam i
powerpoint. 7’

¢ I've created my very first p
your package, it was a pie
rakal ??
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LaTeX Poster Template

Introduction

A LaTeX template to efficently design pretty posters for scientific conferences. Posters are composited of blocks with
headings, which can be positioned easily on the page, using absolute or relative positioning. A number of predefined
styles can be composed to generate new color schemes and ornaments.

““I'was in the usual h¥rrible
facing the most important
conference in my life with
days to go, but your tempi
allowed me to come up wi
(rather nice) poster I encl
day -- from googling to th
-- even leaving some time,
packing my bags ).

““baposter [...] makes beauti
29. September 2011: posters, much better and |
o Finally fixed confusion with paper size handling and landscape. This required seperate handling of papersizes easily than what you can «
known to the geometry package and other packages. powerpoint. 7’
s 26. September 2011:
o Reverted drawing of faded borders to manual method, as the current result does not work with evince, and
produced spurious colored boxes with okular and acroread.

¢ I've created my very first p
your package, it was a pie
rakal ??




COLLECTING AND EXPLORING

Building SubIMDB

SubIMDB is a corpus of everyday lan-
guage with subtitles of movies and series for
family and children. To build it, we first:

. Gathered 12,618 IMDb identifiers.

. Searched OpenSubtitles for subtitles.

. Downloaded one subtitle for each movie,
and one for each episode of a series.

©

We then pre-processed all subtitles by dis-
carding any lines which:

o Contain advertisement.

e Have more than 80 characters.

e Have a long word (15 characters).
e Refer to metadata or timing.

The resulting corpus has 225,847,810 words
from 38,102 subtitles.

SubIMDB Subsets

SubIMDB: All subtitles

SubMOV: All movies

SubSER: All series

SubFAM: Family subtitles
SubCOM: Comedy subtitles

SubCHI: Children subtitles

SubFAM-M: Family Movies
SubFAM-S: Family Series
SubCOM-M: Comedy Movies

SubCOM-S: Comedy Series

SubCHI-M: Children Movies

SubCHI-S: Children Series

University of Sheffield

Lexical Decision Times

[ H2020 Project Reference: 692819

EVERYDAY LANGUAGE FOR PREDICTING
PSYCHOLINGUISTIC PROPERTIES OF WORDS

Gustavo Henrique Paetzold, Lucia Specia
g.h.paetzold@sheffield.ac.uk, 1.specia@sheffield.ac.uk

Simplicity: Frequency

Norm Size p r F-test Norm r P
KF M | 0517 —0.4%6 | e KF 0610 0.626
HAL 131M | —0.641 6 leoe HAL
Wiki 97M | —0.531 6 | o Wiki
iki [ OM . SimpleWiki 0.632
62M . SUBTLEX 0.649
Open2016 | 2B see Open2016 0.650 0.647 0.619
SubIMDB _ | 225M —0624| - SubIMDB 0.654 0.622
SubMOV | 125M —0.626 SUbMOV 0.660 0.623
SubSER | 100M —0.620 SubSER 0.610
SubFAM | 34M ~0.614 SubFAM 0.615
SubCOM | 199M SubCOM 0623 o
SUbCHE __|17M SubCHI 0.611
SubFAM-M [ 17M SubFAMM =
SubFAM-S |17M : St
SubFAM-S | 0.647 0.650
SubCOM-M | 107M ‘2 48
SCOMSS |91k SubCOM-M | 0.660 0.658
s [oni ¢ ; SubCOM-§ | 0647 0.648
SUbCHLS |8M | —0.606 —0.556 SubGHEM:  1:0:650: H.65d
SubCHI-S 0.640 0.644

p<0.1(e), p<0.01 (ee), p<0.001 (e @ @)

Psycholinguistic Features

Age of Acquisition Familiarity
r F-test r F-test
KF —0.447 cee 3 eee
HAL —0.511 coe cee
Wiki —0.412 cee ey
SimpleWiki | —0.486 cee see
SUBTLEX —0.676 cee 0774 eee

Open2016 —0.666 LEEd 0.799 eee
SubIMDB —0.698 - 0.781 -

SubMOV —0.705 eee 0.7 oo
SubSER —0.687 eee X
SubFAM 2 eee oo
SubCOM . cee
SubCHI e oo
SubFAM-M | —0.746  eee oo
SubFAM-S —0.685 cee cee
SubCOM-M | —0.698 eee oo
SubCOM-S | —0.690 eee 0.7 cee
SubCHI-M | —0.728  eee 0723 eee
SubCHI-S —0670 eee 0704 eee

Google IT | NNA N/A

0.602

Best SemEval | N/A  N/A
Simplicity: N-grams
3-grams 5-grams

Norm TRank F-Test | TRank F-Test
KF p eee | ( eee
Wiki 0
SimpleWiki | 0.354 e
SUBTLEX 0.402 .
Open2016 | 0.461  eee oo
SubIMDB 0.425 -
SubMOV 0.401 ..
SubSER 0399 eee .
SubFAM 0379 eee o
SubCOM 0.416 o
SubCHI
SubFAM-M
SubFAM-S
SubCOM-M .
SubCOM-S .
SubCHI-M eee
SubCHI-S cee




Anintelliligaent text adaptation tool.

http://www.simpatico-project.eu
B H2020 Project Reference: 692819

Introduction

Anita is a Google Chrome extension that pro-
vides with intelligent text adaptation solu-
tions that customize the content of webpages
based on the user’s profile.

User Profile

To adapt to a user’s needs, Anita initially re-
quests for some personal information, such as
illustrated below:

User Profile: S ¢
Age:[35
Proficiency Levet: |Intermediate

Undergraduate

Education L

Native Langu:

Text Adaptation

Once a user’s profile is collected, they can se-
lect words in any given webpage and re-
quest for two types of adaptation: Simplifica-
tion and Enhancement. The adaptation in-
terface of Anita is illustrated below:

Enhance

Simplification

The Simplification module of Anita attempts
to replace the selected word with a simpler al-
ternative. Upon request, Anita emplo; su-
pervised lexical simplifier to replace and
highlight the selected word.

Enhancement

The Enhancement module of Anita allows
the user to learn more about words.

Definitions ‘ Synonyms lTransIaiions Images

4
nent.

Before simplification:

m.m

After simplification:

Your review

If the simplification does not help the user,
it can be reversed. In this case, Anita feeds
the simplification data back to the simplifier
so that it can adapt to the user’s needs.

An assessment Is your way to tell an adult you trust about

Anita’s simplifier exploits spoken text cor-
pora, context-aware word embeddings and
supervised ranking models.

Univer

ty of Sheffield

Definitions

Synonyms ‘ Translations

assessment:

Definitions I Synonyms ITranslahons

Images

assessment:

» valutazicne

Definitions Synonyms | Translations

Gustavo Henrique Paetzold, Lucia Specia
g.h.paetzold@sheffield.ac.uk, 1.specia@sheffield.ac.uk
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Complex Word Identification

* 9,200 sentences

* 20-40 words each

* 269 from LexMTurk

* 231 from the CW corpus

® 8,700 from Simple Wikipedia

Annotators

<
b

Annotation

“For each sentence, mark all the words you do
not understand, cven if you understand the
sentence as a whole. If you understand all of
them, just select *I understand all words!””

# £50 raffle compensation
# 400 non-native speakers
» 40 sentences per form

* 9,000 with only 1 answer
* 200 sentences with 20

Agreement

* 0.616 between all annotators
e 0.575 within proficiencies

* 0.638 within educations

® 0.671 within age bands

» 0.718 within languages

Findings
Feature Complex Simple p
Length T1£2 61£2 o
Syllables 2241 17+1 o
Senses ITx1 880 .
Synonyms 23+3 227422 |
Hypernyms 09x1 59+7 .
Hyponyms 08+2 328452 | e
Subimdb[0.0] | —6.6=1 —I5=1 | e
Subtlex[0.0] | —51.3+46 | —44+1 | e
Simple[0,0] | —84=14 | —42+1 |o
Subimdb[T.1] -07+3 .
Subtlex[1,1] | =59.7+52 [ —138+21 |
Simple[1.1] | —10.7 £ 13 —81+£2 o
™
®
0
r \“*\‘
») ~—
® - \+_ -
10| D B |
o
A 81 62 a a
-
w
=
)
sf [ T———
10
B
) 1
T = ED o Tor

University of Sheffield

Substitution Selection

al

t

g @

g
g

Data

® 1,471 complex words

& 10 replacements for each
® 1-3 sentences with each
® 2,654 total sentences

® 25,540 total instances

Annotators

 £50 raffle compensation

® 400 fluent speakers

& 80 instances per form

® 23,940 with only 1 answer

® 1,600 sentences with 5
Annotation
“Judge the following candidate substitutions of

complex words unth respect to their grammat-
icality and meaning preservation. When
Judging, please ignorve any grammatical er-
rors that are not caused by the substitution.”

Agreement

« 0.424 for meaning
* 0.391 for grammaticality
® 0.450 for both jointly

Findings
Feature P
Prob. Subimdb o
Proh. Subtlex .
Prob. Simple 1.6 .
Target Sim. | 0.41=0.2 .
Context Sim. | 0.08+0.1 [ 0.06£0. o
POS Prob. 0.62 £0.4 04404 | @
Meaning
Feature Good Bad P
Prob. Subimdb 3] -009x03 10
Prob. Subtlex .
Prob. Simple .
Target Sim. . .
Context Sim. | 0.08 £ 0.1 o
POS Prob. 0.53+04 04604 | o
M)
Feature Bad r
Prob. Subimdb 1003 | »
Prob. Subtlex -34+18 | o
Prob. Simple —-4.4+20 | o
Target Sim. 02702 [ »
Context Sim. 0.06+0.1 | e
POS Prob. 03204 | »

UNDERSTANDING THE LEXICAL SIMPLIFICATION
NEEDS OF NON-NATIVE SPEAKERS OF ENGLISH

Gustavo Henrique Paetzold, Lucia Specia
g.h.paetzold@sheffield.ac.uk, 1.specia@sheffield.ac.uk

Substitution Ranking

L
# Roosted
# Rested
# Perched
" sat i g k\
4=
e
» Sat
® Rested
® Roosted
® Parched | [
Data
# 901 sentences with a gap
« All with a target word
# 2-4 pool of good candidates
* Target added to pool
# 4,200 total candidate pairs

Annotators

Annotation

“For each of the following instances, select
which candidate makes the sentence easier
to understand. If the words are equally
complex/simple, select the “The words are

equally simple” option. Please overlook any
grammatical or spelling errors.”

« £50 raffle compensation
# 300 fluent speakers

# 70 instances per form

* All with 5 annotations

e 21,000 total annotations

Agreement

# 0.454 between all annotators
» 0.486 within proficiencies

® 0.468 within educations

» 0.482 within age bands

« 0.601 within languages

Findings

Feature r P TRank
Length 0.172 0.179 0.386
Syllables 0.097 0.095 0.340
Senses —0.345  —0.349  0.505
Synonyms —=0288 —0.297 0.454
Hyperyms —0289 —0.207 0472
Hyponyms —0.300  —0.300  0.453
Subimdb[0.0] | 0419  —0436  0.539
Subtlex[0,0] —0465 —0467  0.556
Simple[0,0] —0.490 —0468 0.578
Subimdb[1.1] [ —0463 —0.473  0.579
Subtlex[1.1] —0.496  —0.496 1.500
Simple[1,1] —0.501 0475 0.593

Download

To find this data (and much more), visi
http://gustavopaetzold.wordpress. com

[l H2020 Project Reference: 692819




Complex Word Identification

LexM Turk
he CW corpus
| Simple Wikipedia

Annotatorg

Annotatio
“For each ten
not understan

sentence as a
them, just select

. compensation
. speakers
. s per form

. only 1 answer
| ces with 20

the words you do
u understand the
u understand all of
and all words!"”

jeen all annotators
in proficiencies

in educations

in age bands

in languages

Findings

Feature
Length
Syllables
Senses
Synonyms
Hypernyms
Hyponyms
Subimdb[0,0]
Subtlex[0,0]
Simple[0,0]
Subimdb[T.1]
Subtlex[1,1]
Simple[1.1]

Simple
6.1+2
1.7+1

University of Sheffield

Substitution Selection

al

t

g @

g
g

Data

® 1,471 complex words

& 10 replacements for each
® 1-3 sentences with each
® 2,654 total senten
o 25,540 total instances

Annotators

 £50 raffle compensation

® 400 fluent speakers

® 80 instar per form

® 23,940 with only 1 answer

® 1,600 sentences with 5
Annotation
“Judge the following candidate substitutions of

complex words unth respect to their grammat-
icality and meaning preservation. When
Judging, please ignorve any grammatical er-
rors that are not caused by the substitution.”

Agreement

« 0.424 for meaning
® 0.391 for grammaticality
® 0.450 for both jointly

Findings
Gr y
Feature P
Prob. Subimdb o
Proh. Subtlex .
Prob. Simple 1.6 .
Target Sim. | 0.41=0.2 .
Context Sim. | 0.08+0.1 [ 0.06£0. o
POS Prob. 0.62+04 044+04 | »
Meaning
Feature Good Bad P
Prob. Subimdb | —1.0£0.3 k o
Prob. Subtlex : 14 .
Prob. Simple | — . .
Target Sim. | 0.39 = 0. . 2 [ e
Context Sim. | 0.08+£0.1 | 0.06£0.1 | o
POS Prob. 0.53+04 04604 | o
Joint (G/M)
Feature Bad r
Prob. Subimdb 1003 | »
Prob. Subtlex -34+18 | o
Prob. Simple —-4.4+20 | o
Target Sim. P 2 e
Context Sim. .
POS Prob. .

UNDERSTANDING THE LEXICAL SIMPLIFICATION
NEEDS OF NON-NATIVE SPEAKERS OF ENGLISH

Gustavo Henrique Paetzold, Lucia Specia
g.h.paetzold@sheffield.ac.uk, 1.specia@sheffield.ac.uk

Substitution Ranking

L
# Roosted
# Rested
# Perched
wsat ] - \\
— B -
-
» Sat
® Rested
® Roosted
® Parched | [
Data
# 901 sentences with a gap
« All with a target word
* 2-4 pool of good candidates
# Target added to pool
# 4,200 total candidate pairs

Annotators

<
dul

Annotation

“For each of the following insta
which candidate makes the sentenc
to understand. If the words are egqually
complex/simple, select the “The words are
equally simple” option. Please overlook any
grammatical or spelling errors.”

« £50 raffle compensation
# 300 fluent speakers

# 70 instances per form

* All with 5 annotations

e 21,000 total annotations

. select

easier

Agreement

* 0.454 between all annotators
* 0.486 within proficiencies

® 0.468 within educations

» 0.482 within age bands

« 0.601 within languages

Findings
Feature r P TRank
Length 0.172 0.179
Syllables 0.097 0.005
Senses —0345 —0.349
Synonyms —=0288 —0.297
—0.280 —0.207
—0.300 —0.300
—0419 —0436
Subtlex[0,0] —0.465 —0.467
Simple[0,0] —0.490  —0.468
Subimdb[1.1] | —0.463 —0.473
Subtlex[1.1] —0496  —0.496
Simple[1,1] —0.501 —0.475

Download

To find this data (and much more), visit:
http://gustavopaetzold.wordpress. com

[l H2020 Project Reference: 692819




Complex Word Identification

LexM Turk
he CW corpus
| Simple Wikipedia

Annotatorg

Annotatio
“For each ten
not understan

sentence as a
them, just select

. compensation
. speakers
. s per form

. only 1 answer
| ces with 20

the words you do
u understand the
u understand all of
and all words!"”

jeen all annotators
in proficiencies

in educations

in age bands

in languages

Findings

Feature
Length
Syllables
Senses
Synonyms
Hypernyms
Hyponyms
Subimdb[0,0]
Subtlex[0,0]
Simple[0,0]
Subimdb[T.1]
Subtlex[1,1]
Simple[1.1]

Simple
6.1+2
1.7+1

University of Sheffield

Substitution Selection
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ses with each
il sentens
tal instances

5
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es per form

th only 1 answer
tences with 5

2 L to their grammat-
icality and md servation.
Judging, please grammalical er-
Tors that are nd the substitution.”

Agreemen

meaning
grammaticality
both jointly

Findings

Feature Bad P
Prob. Subimdb -0 : o
Proh. Subtlex .
Prob. Simple —4.3 + 1. .
Target Sim. 020£02 [ »
Context Sim. 0.06£0.1 | o
POS Prob. 0.41£04 | @
lcaning
Feature Bad P
Prob. Subimdb 3] e
Prob. Subtlex .
Prob. Simple .
Target Sim. 2 [ e
Context Sim. 0.06+£0.1 | o
POS Prob. 04604 | o
Feature y p
Prob. Subimdb 1003 | »
Prob. Subtlex -34+18 | o
Prob. Simple —-4.4+20 | o
Target Sim. P 2 e
Context Sim. .
POS Prob. .
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Substitution Ranking

L
# Roosted
# Rested
# Perched
wsat ] - \\
— B -
-
» Sat
® Rested
® Roosted
® Parched | [
Data
# 901 sentences with a gap
« All with a target word
* 2-4 pool of good candidates
# Target added to pool
# 4,200 total candidate pairs

Annotators

<
dul

Annotation

“For each of the following insta
which candidate makes the sentenc
to understand. If the words are egqually
complex/simple, select the “The words are
equally simple” option. Please overlook any
grammatical or spelling errors.”

« £50 raffle compensation
# 300 fluent speakers

# 70 instances per form

* All with 5 annotations

e 21,000 total annotations

. select

easier

Agreement

* 0.454 between all annotators
* 0.486 within proficiencies

® 0.468 within educations

» 0.482 within age bands

« 0.601 within languages

Findings
Feature r P TRank
Length 0.172 0.179
Syllables 0.097 0.005
Senses —0345 —0.349
Synonyms —=0288 —0.297
—0.280 —0.207
—0.300 —0.300
—0419 —0436
Subtlex[0,0] —0.465 —0.467
Simple[0,0] —0.490  —0.468
Subimdb[1.1] | —0.463 —0.473
Subtlex[1.1] —0496  —0.496
Simple[1,1] —0.501 —0.475

Download

To find this data (and much more), visit:
http://gustavopaetzold.wordpress. com

[l H2020 Project Reference: 692819




UNDERSTANDING THE LEXICAL SIMPLIFICATION
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Complex Word Identification

“For each

not understan
sentence as a
them, just select

Findings

Feature

LexM Turk
he CW corpus
p Simple Wikipedia

compensation
speakers
s per form
only 1 answer
ces with 20

the words you do
u understand the
u understand all of
and all words!"”

jeen all annotators
in proficiencies

in educations

in age bands

in languages

Simple

Length
Syllables

6.1+£2
17+1

Senses
Synonyms
Hypernyms
Hyponyms

5.9+ 7
32.8 452

Subimdb[0,0]
Subtlex[0,0]
Simple[0,0]

Subimdb[T.1]
Subtlex[1,1]
Simple[1.1]
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Introduction

Anita is a Google Chrome extension that pro-
vides with intelligent text adaptation solu-
tions that customize the content of webpages
based on the user’s profile.

User Profile

To adapt to a user’s needs, Anita initially re-
quests for some personal information, such as
illustrated below:

User Profile: S ¢
Age:[35
Proficiency Levet: |Intermediate

Undergraduate

Education L

Native Langu:

Text Adaptation

Once a user’s profile is collected, they can se-
lect words in any given webpage and re-
quest for two types of adaptation: Simplifica-
tion and Enhancement. The adaptation in-
terface of Anita is illustrated below:

Enhance

Simplification

The Simplification module of Anita attempts
to replace the selected word with a simpler al-
ternative. Upon request, Anita emplo; su-
pervised lexical simplifier to replace and
highlight the selected word.

Enhancement

The Enhancement module of Anita allows
the user to learn more about words.

Definitions ‘ Synonyms lTransIaiions Images

4
nent.

Before simplification:

m.m

After simplification:

Your review

If the simplification does not help the user,
it can be reversed. In this case, Anita feeds
the simplification data back to the simplifier
so that it can adapt to the user’s needs.

An assessment Is your way to tell an adult you trust about

Anita’s simplifier exploits spoken text cor-
pora, context-aware word embeddings and
supervised ranking models.

Univer

ty of Sheffield

Definitions

Synonyms ‘ Translations

assessment:

Definitions I Synonyms ITranslahons

Images

assessment:

» valutazicne

Definitions Synonyms | Translations

Gustavo Henrique Paetzold, Lucia Specia
g.h.paetzold@sheffield.ac.uk, 1.specia@sheffield.ac.uk
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Simplification

The Simplification module of Anita attempts
to replace the selected word with a simpler al-
ternative. Upon request, Anita emplo su-
pervised lexical simplifier to replace and
highlight the selected word.
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Enhancement

The Enhancement module of Anita allows
the user to learn more about words.
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Images
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After simplification:

Your review

If the simplification does not help the user,
it can be reversed. In this case, Anita feeds
the simplification data back to the simplifier
so that it can adapt to the user’s needs.

An assessment Is your way to tell an adult you trust about

Anita’s simplifier exploits spoken text cor-
pora, context-aware word embeddings and
supervised ranking models.

University of Sheffield
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Grammatical error correction

Grammatical error correction (GEC) in non-
native text attempts to automatically detect and
correct errors that are typical of those found in

learner writing:

» I you need &ither further Information 0o not hesitale 1o
contatt us

= lam glad to helpsss you & with the organisation of the

Intarnational student conference,
* | am pieoe ploasea to i prowvide the information de you

nead for the gtoup

Our approach

We propose an approach to N-best list re-
ranking using neural sequence-labelling
models:

*  We train a compositional model for error detection that
caiculates the probability of each token being correct or
ncorrect

*  We then re-rank the hypotheses generated by statistical
machine transiation {SMT) systems

*  Our approach achieves State-of-the-art results on hvee
different GEC datasets:

* First Cortiteate In English dstaset (FCE)
*  CoNLL 2014 dataset

*  JHU Fluency-Extenced GUG conpus (JFLEG)

Neural sequence labelling

Statistical machine transiation

* We employ two SMT systems: CAMB16,,,, and
AMU1E,,

For each SMT system, we generate the list of all the 10
best candidate hypotheses.

*  We then determine a new ranking using leatures from

the detection model:
* Sentence probabity
*  Levenshiein dstance
* True and false positves

*  We use a linear combination of the above three scores

together with the overall score given by the SMT in an
unsupervised way,

FCE
Fou GLEU
CAMB16,,, 52 90 70.15
CAMB18g, + LSTM. ., 5560 71.76
Oracle 7160 78.54
AMU B0, it 31.66 83.73

AMUIB(yy i + LSTM, ., 3507 5478
Oracle 53.54 6952

CoNLL JFLEG

Fo. GLEU Fos GLEU
3733 6490 5244 4610
42 44 656.42 54 66 ar 72
5813 70 42 6192 5064
4334 6823 4477 41.98
5108 6869  48.88 4326
62 41 71.18 57.49 45.00

Error type performance (F, ;)

CAMBIE,,,,
ANOUN POSS 35.71
RVERB:SVA 58.38
UADV 1351
U-DET 46.27
UPRON 30.77
UVERBTENSE 2841
MPREP 43,69
MVEABFORM §0.00

CAMB16.,, + LETM. .
55.56
69.40
22.73
55.30
3033
4167
943
38.46

detection models on correction performance.

To the best of our knawledge, no prior work has Investigated the impact of

Detection modets can be more fine-tuned 1o finer nuances ot grammaticality, and

therefore better able to distinguish between correct and incorrect versions of a

sentence.

Our approach can be applied to any GEC
hypotheses

System that produces multiple alternative

Qur results demonstrate the benefits of integrating detection approaches with

correction systems, and haw one can complement the other.




lotroduction

» User generated categories (UGCs) express rich semantic relations
implicitly.

> While most methods use pattern matching for English, learning
relations from Chinese UGCs poses challenges due to the flexibile
expressions,

> Our work uses weakly supervised methods to extract relations from
Chinese UGCs based on projection learning and graph mining,

WHQPK-R Tm BeranLae

RRIWBE Wenec of Turisg Anerd 2T ES Bom h V5L
H G e bininel BEWA Lordener ]

weE
1ees

Initial model training

» Use existing labeled sets and heuristic rules to generate training data
automatically (i.e., is-a and not-is-a relation pairs),

» Train 3 skip-gram model to map each word x; to its embedding x;.

» Train two linear projection madels based an word embeddings. One
for is-a relations. The other for not-is-a relations.

1 A A
JMHBT) =3 3 M*e+B -+ FIMHIE + 218717

X (e)eo~ 5y A
JM~8) = ;:;eo- M7+ 8" — calif + SIIMIE + 283
- where e is a Wikipedia concept and ¢, is the head word of a UGC of
‘entity e in its corresponding Wikipedia page.
> Estimate the prediction score s(e, €) for each unlabeled (e, c) pair.
sle,c) = hnlj(ﬂ!ﬂ“’,n,+, BY —culla— M e+ B~ —c,l12)

2=

Mm ion score means ""_;l\'egb'aw;wbabiﬂlyofk-a relation

10w + 107
of

n lo:1 i z(m!gﬁi(.! C)'
UGGs.

Mining 1s-a Relations

Score refinement by callective inference

> Re-normalize the prediction score s(e, c) based on the initial
prediction score and global prediction score.
fle,c) = Bs(e,c) + (1 — B)z(h)
where 3 € (0, 1) is the tuning parameter and g(h) is the
4 4 IR X )
narmalized version of 2(h): g(h) = g, TP
» Expand the number of hypernyms by the following heuristic rule:
Finally, we regard c;, as a valid hypernym of e if ¢ is predicted as a
hypernym of e and ¢, is also a Wikipedia concept

Mining Non-taxonomic Relations

Single-pass category pattern mining

» Extract category patterns by replacing entity placeholders with
specific entity names in UGCs. For example, the pattern is "[E}ix%F
% (Winner of [E])" for "B 522 144 (Winner of Turing Avard)"|
The pair (T8 (H9937-2, (67 32)(Tim Berners-Lee, Turing
Award)" can be extracted as a candidate relation instance

» Calculate the pattern support scare supp(p) of pattern p and filter
out low-support patterns by,

supp(p) = | Ryl + In(1 + L)

where Ry, is the collection of extracted pairs for pattern pand L, is
the pattern length.

Graph-based raw relation extractor

® Far each pattern p, construct a graph G where nodes are extracted
candidate relation pairs based on p and weighted edges are the
semantic similarities between the pairs.

» Detect 3 Maximum Edge Weight Clique (MEWC) C* in G and treat
‘pairs in C* as seed relation instances that p may represent. We
propose 3 Monte Carlo based method to extract the MEWC from the
graph approximately. Please refer to the paper for details.

» Extract relation instances for the underline ralstion that P may

present by finding pairs that are similar to the seed relation instances.

Relation mapping

» Map extracted pairs to relation triples by defining the relation
predicates through i) direct verbal mapping, ii) direct non-yerbal
mapping and iii) indirect mapping

Expetiments

Experiments on is-a relation extraction
> Dataset: 1,788 labeled entity-UGC pairs extracted from Chinese
Wikipedia.

» Metrics: Precision, Recall and F-Measure,
» Results: Our approach outperforms all competitive baselines

Method Precision (%) Recall (%) F-Measure (%)
Concat Model W 842 672 =

Sum Model 809" 701 28

Diff Madel 783 = SIS
Pizcewise Projection 789 123 aass

Our Method {w/o Exp) 833 B4 887
Our Method 898 B88.3 89.0

Experiments on non-taxonomic relation extraction
> Dataset: All entity-UGC pairs in Chinese Wikipedia
> Metrics: Size (£extractions for a certain relation type), Accuracy and
Coverage (whether the extracted relations are covered by a large
existing Chinese KB).
> Results: Our approach can extract a large amount of novel refations
with high accuracy.
Relation  — Size Accuracy
5 i {graduated-from) 48,115 98,0
BF(locatedin) 248972
£ (cxtabiahed-n] 20,154 950
H % (bornin) 11671 983
A (member.of) 8445 %60
%H(npm;g)r 5956 582 i

> Please refer 1o more supplementary experiments in the paper.

Conclusion and Future Woek

> Mmmamwwmmwmmh ‘
Chinese UGCs. It requires very little human ietervention and has high
accuracy for the Chinese language
* Future work includes
2 Improving our wark for short teet knowledge extraction:
> Designing a general framework for cross-imgual UGC refation
extracnon,
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Introduction Adaptat of Databases with Norms for Portuguese
. L L : Study|Participants Wards Properly Portuguese Variant. Scale
- Focus of this study: subjective psycholinguistic properties; 2] | 2357 374 |concreteness, imageavility, subjective fregquency  Ewopean 17
depend on the experiences individuals had using the words dws Lna foh Buopsan |19
: € A | T e Concreteness Braslian 17
1. ward imageahility the ease and speed with which a word evokes a mental image: ST e s Coopen 17
2. concreteness the degree to which words refer ta ohjects, people, places. or things that '@J 103 245 imazaeabillly, comcreleness European 17
can be experionced by the senses; Table 1. Norms for Portuguese on the focused psycholinguistic properties.
3. subjective frequency the estimation of the number of times a word is encountered by

individuals in its written or spoken form:

1. age of acquisition - AoA, is the estimation of the age at which a word was learned Evalua n

Used in various NLP tasks: N .
i - Table 2 presents best results: Skip-Gram and GloVe embeddings
lezical simplification; text simplification at the sentence level; to predict the reading times of th d 300
wi = 300.

- 20x5-fold cross-validation

Cancreteness
Gap and Purpose Regressors (1088

each word in 2 sentence; to create robust text level readability models.

Subjective Fresuency  Imageakility  AoA Merging

(3735) {3735 (2348)
MSE # p [MSE r P MSE ¢ p MSE ¢ p
N ; i : Lesital 124 050 056[0.55 072 073 074 056 059 0.67 073 073
Most of these properties are costly and time-consuming to be S e ] b Pyl yiargis
maﬂual\y gathered‘ GloVe 042 080 081|040 0AL 081 075 063 075 0.7
. . P . Lexical + Skip-gram 044 082 DE2(U 0T 079 047 ULF7 078 059 077 077
- English language: MRC Psycholinguistic database, with 27 Lexical + GloVe 070 0E0 CO[039 081 081 050 0.9 006 0.540.79 0.79
subjective properties for 150,837 words; Skipgrm - Clove 049 0.85 085141 080 030 042 0.79 0.79 067 0.75 0.7
L. . Lexical | Skip-gram | ClaVe 055 085 024(0.38 082 082 043 070 078 054 078 079
- Portuguese: only datasets of limited size [2, 3, 4, 5]; Table 2. MSE and Pearson and Spearman correlation scores of the regression models
- Previous approaches to automatically infer the properties: based MmO ASA(ITLT) ol Merg (2358
on a large, scaree lexical resource as WordNet [1]; MSE £ p MEE o op MSE c p
- Lewical 0491 067 066 104 076 075 067 073 072
- We explore here three research questions: Skipgram 130 056 058 136 068 065 081 066 066
L. is it possible to achieve high Pearson and Spearman correlations and low MSE values using Glave 118 062 DAY 083 079 075 063 D75 075
a regressian mathod with only ward embedding ta infor the psycholinguistic praperties? Lesical | Giove 0.80 0.72 0.71 0.79 0.83 0.60 0.54 0.79 0.79
2. which size a psychalinguistic database should have to be used in regression models? Does Iable 3. MSL, Pearsan, and Spearman correlations of the regression models.
marging databascs from differant sourecs yickd battar corrclation and lowar MSE scores?
3. can the inferred values help in creating features that result in more reliable readability Flesch Harré Concreteness Familiarisy AsA E:"h Gﬂgmz iu‘necm’e Povcholin | iz Srunee
prediction models? B ax Frequency  guistics
026 029 0.27 023 028 036 0.37 0.32 045 0.28 | 0.584

[able 4. F1 measure of Psychalinguistic and Classic readability formulas for readability prediction

The Proposed Method: Regression in a Multi-View

L ing A h
SEIIME SRk Conclusions and Future Work

> — A large database of 26,374 BP words annotated with
Linguislics . PR .
S pldge Fograssor 1 psycholinguistic properties: sttp://nile. icnc usp. br/psycholinguistic
— — Alpha scores of 0.921 for imageability and 0.820 for concreteness
Word = P . .
—P{ = |—* — Averaga — similar to the values reported in literature;
; g Glovio Ficge Regressor 2 ~ With respect to our research questions
1. we have shown we can infer psycholinguistic properties for BP using word embeddings:
& 2 Gur regressors need 3 reasonably large number of training instances (st least. more than
WE:? = two thousand examples). as well as complementary lexieal resources to yvield top
ford2Vac

performance for Ao/ and subjective frequency:

our results shaw that psycholinguistic properties can potentially aid readability predietion

- Future work: extend our extrinsic evaluation to cther tasks; use
new modeling techniques for our psycholinguistic features

(besides the average and standard deviation); use a more robust
10 features grouped in: (i) lexical (1-8); (i) Word2Vec Skip-Gram embeddings approach to fusion of regressors e.p. stacking rezression
{9); and (iii) GloVe embeddings (10): PP! g S g reg

Log of Frequency in SUBTLEX-pL-BR; Refere ces
Log of Contextual diversity [number of subtitles that contain the word) in SUBTLEX-pt-BR;

Log of Frequency in SublMDb PT: subtitles of family, comedy and children movies and series; 111 Gustavo H. Pastzold and Lucia Specia. Inferring psycholinguistic properties of words
Log, of Frequency in the Written Language part of Corpus Brasileiro (1 billien words of Pracedings of NAACL-HLT, pp. 435-440, 2016
Contemporary BP); 2] Soares. AP, Costa, AS. ). M., Comesana. M H.M - The minho ward pool: Norms for

|ng °; peq“e”‘v in the 5”"“5? L‘L”f_“ﬁfgs ”E‘: of Cr"l";,“s ?[?5"5';0' nRE imageability. concreteness, and subjective frequency for 3,800 portuguese words. Behavior
Lag of Frequency in a corpus of 1.4 billion tokens of Mixed Text Genres in BP; Research Methods (2016)

Wiord Length
Lexical databases from 6 scheol dictionaries for specific grade-levels;

Ward's raw cibedding values of Skip-Gram [d — 300, 600 and 1.008):

10 Word's raw embedding walues of GlaVe (d — 300. 600 and 1,000}

Embeddings models trained over a corpus of 1.4 billion tokens composed by
mixed text genres {http:/ /wwwe.nilc.icmc.usp.br/embeddings) [

SipGram  Ridgo Rogressor 3
Figure 1. Pipeline that concatenates all features to train a Multi-View Learning regresser.

Features for Regressol
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Introduction

- Focus of this study: subjective psycholinguistic properties;

depend on the experiences individuals had using the words:

I, word imageability the ease and speed with which a word evokes a mental image;

2. concreteness the degree to which words refer to objects, people, places, or things that
can be experienced by the senses,

3. subjective frequency the estimation of the number of times a word is encountered by

individuals in its written or spoken form;
4. age of acquisition - Ao is the estimation of the age at which a word was learned,

~ Used in various NLP tasks:
lexical simplification; text simplification at the sentence level, to predict the reading times of

each word in a sentence; to create robust text level readability models.

Gap and Purpose

Most of these properties are costly and time-consuming to be
manually gathered;

English language: MRC Psycholinguistic database, with 27
subjective properties for 150,837 words;

Portuguese: only datasets of limited size [2, 3, 4, 5];

Previous approaches to automatically infer the properties: based
on a large, scarce lexical resource as WordNet [1];

- We explore here three research questions:
L. is it possible to achieve high Pearson and Spearman correlations and low MSE values using
a regression method with only word embedding to infer the psycholinguistic properties?
2. which size a psycholinguistic database should have to be used in regression models? Does
merging databases from different sources yield better correlation and lower MSE scores?
3. can the inferred values help in creating features that result in mere reliable readability

prediction models?
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We predict 4 psycholinguistic properties for Portuguese:
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[

Concreteness: Depree to which words refer to things that can be
experienced by the senses.

3. Familiarity: Estimate of the mumber of times a word is encountered
by individuals in its written or spoken form.

1. Apge of Acquisition: The estimate of the age at which a word was
learned.

Various applications:

o Lexical simplification # Reading time prediction
e Sentence simplification ¢ Readabilitv models

Challenges:
1. Manmually produced properties for Portuguese are very scarce

2. Previous approaches use expensive, unavailable resources




Introduction

Focus of this study: subjective psycholinguistic properties;

depend on the experiences individuals had using the words:

I, word imageability the ease and speed with which a word evokes a mental image;

2. concreteness the degree to which words refer to objects, people, places, or things that
can be experienced by the senses,

3. subjective frequency the estimation of the number of times a word is encountered by
individuals in its written or spoken form;

4. age of acquisition - Ao is the estimation of the age at which a word was learned,

Used in various NLP tasks:
lexical simplification; text simplification at the sentence level, to predict the reading times of

each word in a sentence; to create robust text level readability models.

Gap and Purpose

Most of these properties are costly and time-consuming to be
manually gathered;

English language: MRC Psycholinguistic database, with 27
subjective properties for 150,837 words;

Portuguese: only datasets of limited size [2, 3, 4, 5];

Previous approaches to automatically infer the properties: based
on a large, scarce lexical resource as WordNet [1];

We explore here three research questions:

L. is it possible to achieve high Pearson and Spearman correlations and low MSE values using
a regression method with only word embedding to infer the psycholinguistic properties?

2. which size a psycholinguistic database should have to be used in regression models? Does
merging databases from different sources yield better correlation and lower MSE scores?

3. can the inferred values help in creating features that result in mere reliable readability
prediction models?

Introduction

We predict 4 psycholinguistic properties for Portuguese:

1. Imageahility: Ease with which a word evokes a mental image.

[

Concreteness: Depree to which words refer to things that can be
experienced by the senses.

3. Familiarity: Estimate of the mumber of times a word is encountered
by individuals in its written or spoken form.

1. Apge of Acquisition: The estimate of the age at which a word was
learned.

Various applications:

o Lexical simplification # Reading time prediction
e Sentence simplification ¢ Readabilitv models

Challenges:
1. Manmually produced properties for Portuguese are very scarce

2. Previous approaches use expensive, unavailable resources




Introduction

Focus of this study: subjective psycholinguistic properties;

depend on the experiences individuals had using the words:
I, word imageability the ease and speed with which a word evokes a mental image;
2. concreteness the degree to which words refer to objects, people, places, or things that

can be experienced by the senses,

3. subjective frequency the estimation of the number of times a word is encountered by

individuals in its written or spoken form;

4. age of acquisition - Ao is the estimation of the age at which a word was learned,

lUsed in various NLP tasks:

lexical simplification; text simplification at the sentence level, to predict the reading times of

each word in a sentence; to create robust text level readability models.

Gap and Purpose

Most of these properties are costly and time-consuming to be
manually gathered;

English language: MRC Psycholinguistic database, with 27
subjective properties for 150,837 words;

Portuguese: only datasets of limited size [2, 3, 4, 5];

Previous approaches to automatically infer the properties: based
on a large, scarce lexical resource as WordNet [1];

We explore here three research questions:

L. is it possible to achieve high Pearson and Spearman correlations and low MSE values using
a regression method with only word embedding to infer the psycholinguistic properties?

2. which size a psycholinguistic database should have to be used in regression models? Does
merging databases from different sources yield better correlation and lower MSE scores?

3. can the inferred values help in creating features that result in mere reliable readability
prediction models?

[

Introduction

We predict 4 psycholinguistic properties for Portuguese:

. Imageability: Ease with which a word evokes a mental image.

Concreteness: Depree to which words refer to things that can be
experienced by the senses.

Familiarity: Estimate of the number of times a word is encountered
by individuals in its written or spoken form.

Apge of Acquisition: The estimate of the age at which a word was
learned.

Various applications:
o Lexical simplification # Reading time prediction

o Readabilitvy models

e Sentence simplification

Challenges:
1. Manmually produced properties for Portuguese are very scarce

2. Previous approaches use expensive, unavailable resources




Introduction

Focus of this study: subjective psycholinguistic properties;

depend on the experiences individuals had using the words:

I, word imageability the ease and speed with which a word evokes a mental image;

2. concreteness the degree to which words refer to objects, people, places, or things that
can be experienced by the senses,

3. subjective frequency the estimation of the number of times a word is encountered by
individuals in its written or spoken form;

4. age of acquisition - Ao is the estimation of the age at which a word was learned,

Used in various NLP tasks:
lexical simplification; text simplification at the sentence level, to predict the reading times of

each word in a sentence; to create robust text level readability models.

| Gap and Purpose

Most of these properties are costly and time-consuming to be
manually gathered;

English language: MRC Psycholinguistic database, with 27
subjective properties for 150,837 words;

Portuguese: only datasets of limited size [2, 3, 4, 5];

Previous approaches to automatically infer the properties: based
on a large, scarce lexical resource as WordNet [1];

We explore here three research questions:

L. is it possible to achieve high Pearson and Spearman correlations and low MSE values using
a regression method with only word embedding to infer the psycholinguistic properties?

2. which size a psycholinguistic database should have to be used in regression models? Does
merging databases from different sources yield better correlation and lower MSE scores?

3. can the inferred values help in creating features that result in mere reliable readability
prediction models?

[

Introduction

We predict 4 psycholinguistic properties for Portuguese:

. Imageability: Ease with which a word evokes a mental image.

Concreteness: Depree to which words refer to things that can be
experienced by the senses.

Familiarity: Estimate of the number of times a word is encountered
by individuals in its written or spoken form.

Apge of Acquisition: The estimate of the age at which a word was
learned.

Various applications:

o Lexical simplification # Reading time prediction

e Sentence simplification ¢ Readabilitv models

Challenges:
1. Manmually produced properties for Portuguese are very scarce

2. Previous approaches use expensive, unavailable resources




Features for Regressors

10 features grouped in: (i) lexical (1-8); (ii) Word2Vec Skip-Gram embeddings
(9); and (iii) GloVe embeddings (10):

L kD

=

10.

Log of Frequency in SUBTLEX-pt-BR;

Log of Contextual diversity (number of subtitles that contain the word) in SUBTLEX-pt-BR;
Log of Frequency in SubIMDb-PT: subtitles of family, comedy and children movies and series;
Log of Frequency in the Written Language part of Corpus Brasileiro (1 billion words of
Contemporary BP);

Log of Frequency in the Spoken Language part of Corpus Brasileiro;

Log of Frequency in a corpus of 1.4 billion tokens of Mixed Text Genres in BP;

Word Length;

Lexical databases from 6 school dictionaries for specific grade-levels;

Word's raw embedding values of Skip-Gram (d = 300, 600 and 1,000);

Word's raw embedding values of GloVe (d = 300, 600 and 1,000).

Embeddings models trained over a corpus of 1.4 billion tokens composed by
mixed text genres (http://www.nilc.icmc.usp.br/embeddings)
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Evaluation

— Table 2 presents best results: Skip-Gram and GloVe embeddings
with d = 300.

- 20x5-fold cross-validation
Concreteness  Subjective Frequency Imageability ~ AoA Merging

Regressors (4088) (3735) (3735) (2368)
MSE r p MSE r P MSE r p MSE r p
Lexical 1.24 054 056 055 0.72 073 0.74 058 0.59 0.67 0.73 0.73
Skip-gram 0.52 0.84 0.84 058 0.70 0.71 046 0.77 0.77 0.81 0.66 0.66
GloVe 0.62 0.80 0.81 0.40 0.81 081 049 0.75 0.75 0.63 0.75 0.75
Lexical + Skip-gram 064 082 0.82 0.44 0.79 0.79 047 0.77 0.78 059 0.77 0.77
Lexical + GloVe 0.70 0.80 0.80 0.39 0.81 0.81 050 0.75 0.76 0.54 0.79 0.79

Skip-gram + GloVe 0.490.850.85 0.41 080 0.80 0.420.790.79 062 0.75 0.75
Lexical + Skip-gram + GloVe 0.55 0.85 0.84 0.38 0.82 0.82 043 0.79 0.78 0.54 0.79 0.79

Table 2. MSE and Pearson and Spearman correlation scores of the regression models.

AoA (765) AoA (1717) AoA Merge (2368)
MSE r p MSE r p MSE r p
Lexical 0.91 0.67 0.66 1.04 0.76 0.75 0.67 0.73 0.72
Skip-gram  1.30 0.56 0.58 1.36 0.68 0.65 0.81 0.66 0.66
GloVe 1.18 0.62 0.63 0.93 0.79 0.75 063 0.75 0.75
Lexical + GloVe 0.80 0.72 0.71 0.79 0.83 0.80 0.54 0.79 0.79

Table 3. MSE, Pearson, and Spearman correlations of the regression models.

Regressors

Dale- Gunning Subjective Psygh?lin— MATTR Brunét
Chall Fox  Frequency guistics

026 0.29 0.27 023 025 0.36 0.37 0.32 0.45 048 0.54
Table 4. F1-measure of Psycholinguistic and Classic readability formulas for readability prediction.

Flesch Honoré Concreteness Familiarity AoA
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Conclusions and Future Work

- A large database of 26,874 BP words annotated with
psycholinguistic properties: nttp://nilc.icmc.usp.br/psycholinguistic

- Alpha scores of 0.921 for imageability and 0.820 for concreteness
— similar to the values reported in literature;

~ With respect to our research questions:

1. we have shown we can infer psychalinguistic properties for BP using word embeddings;

2. our regressors need a reasonably large number of training instances (at least, more than
two thousand examples), as well as complementary lexical resources to yield top
performance for AcA and subjective frequency;

3. our results show that psycholinguistic properties can potentially aid readability prediction.

- Future work: extend our extrinsic evaluation to other tasks; use
new modeling techniques for our psycholinguistic features
(besides the average and standard deviation); use a more robust
approach to fusion of regressors, e.g. stacking regression.
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— similar to the values reported in literature;

— With respect to our research questions:

1. we have shown we can infer psychalinguistic properties for BP using word embeddings;

2. our regressors need a reasonably large number of training instances (at least, more than
two thousand examples), as well as complementary lexical resources to yield top
performance for AcA and subjective frequency;

3. our results show that psychalinguistic properties can potentially aid readability prediction.

Clonclusions drawn:

Possible to infer psvcholinguistic properties for BP with embeddings

-

R egressors need a substantial amount of training data

Age of acquisition and familiarity models require extra resources

Our psvcholinguistic properties can improve readability prediction

- Future work: extend our extrinsic evaluation to other tasks; use
new modeling techniques for our psycholinguistic features
(besides the average and standard deviation); use a more robust

approach to fusion of regressors, e.g. stacking regression. http://nilc.icmc.usp.br/psycholinguistic

Download
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Conclusions and Future Work
~ A large database of 26,874 BP words annotated with
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new modeling techniques for our psycholinguistic features
(besides the average and standard deviation); use a more robust
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Experiment 3: Does it works for simple
(AKA error-prone) heuristics?

We used LDC Chinese-English dictionary to
generate high-precision-low-recall partial
alignments

The entries with single Chinese character or
more than six English words are filtered out.

Add links when a lexicon entry was
encountered in the sentence pair

79.48% precision and 17.36% recall rate




Conclusion

* We implemented a semi-supervised word
alignment algorithm based on IBM models which
can use partial word alignment.

* Experiments were performed to prove that:

— 1. The algorithm can correct more links than directly
fixing the incorrect links

— 2. Better alignment quality can be achieved by
carefully selecting words to ask the oracle

— 3. By supplying high-precision-low-recall alignment
links the alignment quality can also be improved.
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A better way

* Let the knowledge determine the known part,
and let models determine the rest.

* The knowledge will:
— Affect the statistics we get for the model

— Be reflected in the final alignment

Anything conflicting with known
alignments should be forbidden

* Pereira and Schabes, 1992, Similar idea on SCFGs
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* Metrics:

— Flesch-Kincaid grade level: the number of years of
education generally required to understand a text.

— ROUGE-n: n-gram co-occurrence between
hypothesis and reference

* Data
— Training set: 754 sentences
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— 70% Wikipedia, 25% NY Times, 5% synthetic
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Optional speech control
Push-to-Talk Buttons

Close-talking

Microphone

Laptop secured in Backpack
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Named-entity recognition (NER)

(also known as entity identification,
entity chunking and entity extraction)

is a subtask of information extraction

that seeks to locate and classify

named entities in text into pre-defined
categories such as the names of persons,
organizations, locations, expressions of
times, quantities, monetary values,
percentages, etc.

EDA

Obamajaddressed the|FDA|questions
in the city of|Denver - CA [ast week.




Named-entity recognition (NER)

(also known as entity identification,
entity chunking and entity extraction)

IS a subtask of information extraction

that seeks to locate and classify

named entities in text into pre-defined
categories such as the names of persons,
organizations, locations, expressions of
times, quantities, monetary values,
percentages, etc.

Anita == ﬁnita

EDA

Obamajaddressed the|FDA|questions
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The Update Gate
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Gated Recurrent Units

Reset gate:
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The Output
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AoA (765) AoA (1717) AoA Merge (2368)
MSE r p MSE r p MSE r p

Regressors

Lexical 091 0.67 0.66 1.04 0.76 0.75 0.67 0.73 0.72
Skip-gram  1.30 0.56 0.58 1.36 0.68 0.65 0.81 0.66 0.66
GloVe 1.18 0.62 0.63 0.93 0.79 0./5 0.63 0.75 0.75
Lexical + GloVe 0.80 0.72 0.71 0.79 0.83 0.80 0.54 0.79 0.79
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Evaluation metrics:

Flesch-Kincaid Grade Level ROUGE-n
lLl . 5\ overlapping n—grams
m . total n—grams in reference

w York Tim Times of India

IIII 1 1 T 1
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Dealing with English

Best course of action for:

People AlMoOst never understand me ®

Letting a co-author or a colleague present
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Work

Experiment Setup

* Metrics:

— Flesch-Kincaid grade level: the number of years of
education generally required to understand a text.

— ROUGE-n: n-gram co-occurrence between
hypothesis and reference

* Data
— Training set: 754 sentences
— Unseen test set: 100 sentences
— 70% Wikipedia, 25% NY Times, 5% synthetic
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Important note:

Don’'t give U ON yourself
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Dealing with English

Best course of action for:

People understand me, but not without O ot of effort ®

» Say short sentences slowly
« Use cue cards
« Rehearse a lot
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Dealing with English

Cue card tools:

OWindows: Powerpoint presenter view
OMac OS: Keynote presenter view
Olatex: pdfpc-latex-notes
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Best course of action for:

| only struggle Very rarely to make myself understood ©

lam a fluent speaker ©
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Dealing with English

Big NO-NOS of oral presentations:
1. Not respecting the time Iimif
2. Reading the slides

3. Skipping slides

4. Not speaking loudly enough
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Dealing with English

The performance preview slide
(right after introduction)

Awesome
scoresll!
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The English proficiency alert

I’'m still learnin ‘
| g English!
€ be kind with the questions ©

Pleas
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But what about...
...the Q&A session?
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The "presentation buddy”
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OPosters:
|.Remove unnecessary stuft
2. Make things concise/visual
3. Structure it well
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OSlides:

l.... same thing
2. Stepity!
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Main takeaways

OPresentation:
|.Respect the no-no list
2.Try to use some of the cool practices
3. Follow our “best course of action”



Thank youl!



